Global Environmental Specialists

720 Third Avenue, Suite 1700 Seattle, Washington 98104 Tel: (206) 624-9537, Fax: (206) 621-9832

MEMORANDUM

DATE:

June 23, 2015

TO:

Eric Nuchims, Project Manager, E & E, Seattle, Washington

FROM:

Mark Woodke, START-4 Chemist, E & E, Seattle, Washington

SUBJ:

Organic Data Quality Assurance Review, John Day Vapor Response Site,

John Day, Oregon

REF:

TDD: 15-05-0005

PAN: 1004530.0004.111.02

The data quality assurance review of 1 water sample collected from the John Day Vapor Response site in John Day, Oregon, has been completed. Volatile organic compound analysis (EPA Method 8260) was performed by Friedman and Bruya, Inc., Seattle, Washington. All sample analyses were evaluated following EPA's Stage 2B and/or 4 Data Validation Electronic and/or Manual Process (S2B/4VE/M).

The sample was numbered/labeled:

15053134/TB09GW

Data Qualifications:

Sample Holding Times: Acceptable. 1.

The sample was maintained and received within the QC limits of < 6°C. The sample was collected on June 4, 2015, and was analyzed on June 9, 2015, therefore meeting OC criteria of less than 7 days between collection and analysis for unpreserved water samples.

2. Tuning: Acceptable.

Tuning was performed at the beginning of each 12-hour analysis sequence. All results were within QC limits.

3. Initial Calibration: Acceptable.

All average Relative Response Factors (RRFs) were within the QC limits. All Relative Standard Deviations (RSDs) and/or correlation coefficients were within the QC limits.

4. Continuing Calibration: Satisfactory.

All RRFs were within the QC limits. All % differences were within the QC limits except bromomethane, chloroethane, and naphthalene with high recoveries in one or more continuing calibration; no actions were taken based on these outliers as they were not detected in the sample.

5. Blanks: Acceptable.

A method blank was analyzed for each 20 sample batch per matrix. There were no detections in any method blank.

6. System Monitoring Compounds (SMCs): Acceptable.

All SMC recoveries were within QC limits.

7. Matrix Spike (MS)/MS Duplicate (MSD)/Blank Spike (BS)/BS Duplicate (BSD) Analysis: Satisfactory.

Spike analyses were performed per SDG or per matrix per concentration level, whichever was more frequent. All recoveries were within QC limits except bromomethane and chloroethane with high recoveries; no actions were taken based on these outliers as these analytes were not detected in the sample.

8. Duplicate Analysis: Acceptable.

Laboratory duplicate analysis was performed per SDG or per matrix per concentration level, whichever was more frequent. All duplicate results were within QC limits.

9. Internal Standards: Acceptable.

All internal standards were within \pm 30 seconds of the continuing calibration internal standard retention times. All area counts were within 50 % to 200 % of the continuing calibration area counts.

10. Precision and Bias Determination: Not Performed.

Samples necessary to determine precision and bias were not provided to the laboratory. All results were flagged "PND" (Precision Not Determined) and "RND" (Recovery Not Determined), although the flags do not appear on the data sheets.

11. Performance Evaluation Sample Analysis: Not Provided.

Performance evaluation samples were not provided to the laboratory.

12. Overall Assessment of Data for Use

The overall usefulness of the data is based on the criteria outlined in the Site-Specific Sampling Plan and/or Sampling and Quality Assurance Plan, the OSWER Guidance Document "Quality Assurance/Quality Control Guidance for Removal Activities, Sampling QA/QC Plan, and Data Validation Procedures" (EPA/540/G-90/004), the analytical method, and, when applicable, the Office of Emergency and Remedial Response Publication "USEPA Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review". Based upon the information provided, the data are acceptable for use with the above stated data qualifications.

Data Qualifiers and Definitions

- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- JH The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample with a high bias.
- JL The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample with a low bias.

- JK The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample with an unknown direction of bias.
- JQ The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample with an unknown direction of bias and falls between the MDL and the Minimum (or Practical) Quantitation Limit (MQL, PQL).
- N The analysis indicates the present of an analyte for which there is presumptive evidence to make a "tentative identification".
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was not detected above the reported sample quantitation limit. However, the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.

FRIEDMAN & BRUYA, INC.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By EPA Method 8260C

Client Sample ID:	TB09GW	Client:	Ecology and Environment
Date Received:	06/04/15	Project:	10PB, 10-060415-095219-0024, F&BI 506112
Date Extracted:	06/09/15	Lab ID:	506112-01
Date Analyzed:	06/10/15	Data File:	061006.D
Matrix:	Water	Instrument:	GCMS7
Units:	ug/L (ppb)	Operator:	VM
		Lower	Upper

	Tower	Obber
% Recovery:	Limit:	Limit:
104	94	108
99	91	107
98	91	110
	104 99	% Recovery: Limit: 104 94 99 91

	Concentration		Concentration
Compounds:	ug/L (ppb)	Compounds:	ug/L (ppb)
Dichlorodifluoromethane	<1 <i>U</i>	1,3-Dichloropropane	<1 U
Chloromethane	<10	Tetrachloroethene	<1
Vinyl chloride	<0.2	Dibromochloromethane	<1
Bromomethane	<1	1,2-Dibromoethane (EDB)	<1
Chloroethane	<1	Chlorobenzene	<1
Trichlorofluoromethane	<1	Ethylbenzene	<1
Acetone	<10	1,1,1,2-Tetrachloroethane	<1
1,1-Dichloroethene	<1	m,p-Xylene	<2
Hexane	<1	o-Xylene	<1
Methylene chloride	<5	Styrene	<1
Methyl t-butyl ether (MTBE)	<1	Isopropylbenzene	<1
trans-1,2-Dichloroethene	<1	Bromoform	<1
1,1-Dichloroethane	<1	n-Propylbenzene	<1
2,2-Dichloropropane	<1	Bromobenzene	<1
cis-1,2-Dichloroethene	<1	1,3,5-Trimethylbenzene	<1
Chloroform	<1	1,1,2,2-Tetrachloroethane	<1
2-Butanone (MEK)	<10	1,2,3-Trichloropropane	<1
1,2-Dichloroethane (EDC)	<1	2-Chlorotoluene	<1
1,1,1-Trichloroethane	<1	4-Chlorotoluene	<1
1,1-Dichloropropene	<1	tert-Butylbenzene	<1
Carbon tetrachloride	<1	1,2,4-Trimethylbenzene	<1
Benzene	< 0.35	sec-Butylbenzene	<1
Trichloroethene	<1	p-Isopropyltoluene	<1
1,2-Dichloropropane	<1	1,3-Dichlorobenzene	<1
Bromodichloromethane	<1	1,4-Dichlorobenzene	<1
Dibromomethane	<1	1,2-Dichlorobenzene	<1
4-Methyl-2-pentanone	<10	1,2-Dibromo-3-chloropropane	<10
cis-1,3-Dichloropropene	<1	1,2,4-Trichlorobenzene	<1 ∫
Toluene	<1	Hexachlorobutadiene	<1
trans-1,3-Dichloropropene	<1	Naphthalene	<1
1,1,2-Trichloroethane	<1 \/\	1,2,3-Trichlorobenzene	<1 🗸
2-Hexanone	$_{<10}$ \forall		•

Mw 6-23-15